This is the second of two lessons where students learn to identify odd and even functions. Previously, students learned to identify characteristics of graphs of odd and even functions. They then focused on specific points, and concluded the lesson by summarizing that a function \(f\) is even if \(f(x)=f(\textx)\) and a function \(g\) is odd if \(g(x)=\textg(\textx)\). In this lesson, the focus is on equations and justifying if a function is even, odd, or neither using only the equation. This lesson also marks a transition to working primarily with functions written in terms of \(x\) and not in terms of another function.
Students are given opportunity to make use of structure as they complete the graphs of an even function, an odd function, and a function that is neither (MP7). They also learn to use an input of \(\textx\) when determining if a function is even, odd, or neither from the structure of its equation.
Technology isn't required for this lesson, but there are opportunities for students to choose to use appropriate technology to solve problems. We recommend making technology available.
Lesson overview
 6.1 Warmup: Notice and Wonder: Same and Different (5 minutes)
 6.2 Activity: Finish the Graph (15 minutes)

6.3 Activity: Odd and Even Equations (15 minutes)
 Includes "Are you Ready for More?" extension problem
 Lesson Synthesis
 6.4 Cooldown: Even More Symmetry (5 minutes)
Learning goals:
 Explain (orally) how to sketch the second half of an even or odd function given the first half.
 Justify (orally and in writing) why a function is even, odd, or neither from an equation.
Learning goals (student facing):
 Let’s use equations to decide if a function is even, odd, or neither.
Learning targets (student facing):
 I can complete graphs of even and odd functions if I know what half the graph looks like.
 I can identify even and odd functions by their equations.
Required materials:
 Tracing paper
Required preparation:
 Provide access to tracing paper for students who need support visualizing the transformations.
IM Algebra 1, Geometry, Algebra 2 is copyright 2019 Illustrative Mathematics and licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
The Illustrative Mathematics name and logo are not subject to the Creative Commons license and may not be used without the prior and express written consent of Illustrative Mathematics.